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I admiredmany times the mystical system 
of Pythagoras and the magic of the numbers 

Thomas Browne 
(1605-1682) 

We consider a generalization of Fibonacci numbers that was motivated by the rela- 
tionship of the Hosoya Z topological index to the Fibonacci numbers. In the case of the 
linear chain structures the new higher order Fibonacci numbers hFn are directly related to 
the higher order Hosoya-type Z numbers. We investigate the limits F,/F,-I and the cor- 
responding equations, the roots of which allow one to write a general expression for hFn. 
We also report on the hF counting polynomials that give the partition of the hF numbers 
in contributions arising from k pairs of disjoint paths of length h. It is interesting to see 
that the partitions ofhF are "hidden" in the Pascal triangle in a similar way to the parti- 
tions of the Fibonacci numbers that were discovered some time ago by Hoggatt. We end 
with illustrations of the recursion formulas for the higher order Hosoya numbers for sev- 
eral families of graphs that are based on the corresponding recursions for the higher 
Fibonacci numbers. 

1. Introduction 

F i b o n a c c i  n u m b e r s  are ubiqui tous ,  emerg ing  unexpec ted ly  in di f ferent  p rob l ems  

a n d  in diverse disciplines. In  chemis t ry  one finds F ibonacc i  n u m b e r s  when  c o u n t i n g  

the Keku le  s t ruc tures  in z ig-zag fused l inear chains  o fbenzeno ids :  

¢r Dedicated to Professor Haruo Hosoya of Ochanomizu University, Tokyo, Japan, on the occasion 
of 25 years of the topological index Z. 
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K = 5  K = 8 K = 13 K = 21 

Phenathrene Chrysene Picene Fulminene .... 

The algorithm for the count of Kekule valence structures of Gordon and Davison 
[1] is reduced in the case of  zig-zag linearly fused benzene rings to the construction 
of  the Fibonacci numbers. Hence, it is not surprising that it was suggested to refer 
to the zig-zag fused linear benzenes as Fibonaccenes [2]. Balaban and Tomescu [3- 
5] have in particular studied the relations between the Fibonacci sequence and the 
numbers of Kekule structures for non-branched cata-condensed polycyclic aro- 
matic hydrocarbons. As a result of their studies these authors have even introduced 
a particular generalization of  Fibonacci numbers, to be mentioned later, which fol- 
lows from consideration of the number of Kekule valence structures in linearly 
fused k-benzene rings in a zig-zag fashion. 

Fibonacci numbers also occur in connection with the Hosoya Z-topological 
index [6]. The Z-index of  a graph G is based on the count k mutually disjoint edges 
in a graph. We have been interested in extending the approach of  Hosoya and 
wished to arrive at additional topological indices that are structurally related to the 
Z index. In doing this we came at the same time across the generalized Fibonacci 
numbers that we here report on. 

The earliest generalization of the Fibonacci numbers, F,, have been reported 
already over thirty years ago. Horadam considered a generalization in which the 
recurrence relation of the Fibonacci sequence is preserved but the first two terms 
are altered [7]. Feinberg extended the summation property Fn = Fn-1 + F~-2 of  the 
Fibonacci sequence to Fn = F~-I + Fn-2 + Fn-3 [8]. The new numbers were named 
"tribonacci" numbers, because now addition of three successive members in the 
sequence give the next member. More recently several other generalizations of the 
Fibonacci sequences were reported in the literature [9]. We consider yet another  
generalization that, as we mentioned, resulted from a consideration of  graph-theo- 
retical invariants of interest in chemistry. We should mention, however, that this is 
not  the first generalization of the Fibonacci numbers even in chemical application 
of  graph theory. Balaban and Tomescu [4] selected zig-zag fused benzenoids with 
longer linear segments and selected the number of the Kekule structures for the 
fragments ending at a "kink"  as generalized Fibonacci numbers. In the case of zig- 
zag fused anthracene units, the smallest such generalized case, they obtained 

4 ,10 ,24 ,58 ,140 ,338 , . . . .  
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This sequence satisfies the recursion: Kn = 2Kn_l + K~-2. This differs from the 
recursion for the Fibonacci numbers only in the factor of  two, and hence can be 
viewed as a generalization of the Fibonacci sequence. 

Our approach represents a different generalization of the same sequence. We 
like to think that our generalization produces sequences that are even closer in 
properties, including recursion relations, to the original Fibonacci sequence. Our 
generalization, because the properties of the derived higher order Fibonacci 
numbers are in many ways very closely related to the well-known properties of 
the Fibonacci numbers [10,11], appears very natural. As we will show the derived 
generalized Fibonacci numbers have a direct relationship to the recently intro- 
duced higher order Hosoya kz indices [12,13]. For a graph G Hosoya defined 
the Z number, referred to as the topological index of a molecule, in the following 
way [6]: 

Z = I + p ( G ,  1)+p(G, 2)+p(G, 3)+p(G,4)+ . . . .  Ep (G ,k ) .  (1) 
k 

Here p(G, k) represents the number of different ways of selecting k nonadjacent 
edges in the graph. The summation extends over all possible numbers of such edges. 
By definitionp(G, 0) = 1 and necessarily p(G, 1) is equal to the number of edges in 
the graph. The so derived Z index was subsequently used by Hosoya and coworkers 
to correlate the boiling points of alkanes (saturated hydrocarbons of the general 
formula CnH2n+2) and other physicochemical properties of alkenes with their struc- 
ture [14]. 

Hosoya found that for a linear chain the Z indices are the Fibonacci numbers 
[6]. The relationship is as follows: Z = Fn+l. Since we generalize the Hosoya num- 
ber Z, we use the label 1Z to represent the Hosoya Z index and hZ to represent the 
higher order Z numbers. We wish to design a set of descriptors (1Z, 2Z, 3Z, 4Z, 5Z, 
. . . ,  hz) that are structurally related and that will lead, hopefully, to a satisfactory 
representation of molecules. As is known many topological indices are combined in 
an ad hoc manner. Many indices, including the Hosoya index Z, also show a high 
degree of degeneracy, i.e., different structures show the same numerical value for 
the index. Use of an ordered set of indices, instead of a single index, will lead to a 
better discrimination among structures while at the same time such indices could be 
used as molecular descriptors in multivariable regression analyses analogous to the 
use of the connectivity index ~X [15] and the higher connectivity indices m X [16] in 
the structure-property studies [17]. 

2. General iza t ion of  the Hosoya  Z index 

In Table 1 we list for chains of increasing length the initial members of the gener- 
alized Hosoya hz numbers that we can also refer to as the "higher order Hosoya 
numbers". Let us first define the second order Hosoya index 2Z: 
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Table 1 
The Fibonacci numbers and the higher order Fibonacci numbers. 

1F 2 F 3 F 4 F 

0 1 1 1 1 
1 1 1 1 1 
2 2 2 2 2 
3 3 3 3 3 
4 5 4 4 4 
5 8 6 5 5 
6 13 9 7 6 
7 21 13 10 8 
8 34 19 14 11 
9 55 28 19 15 

10 89 41 26 20 
11 144 60 36 26 
12 233 88 50 34 
13 377 129 69 45 
14 610 189 95 60 

DEFINITION 

1 + p2(G, 1 ) +  p2(G, 2 ) +  p2(G, 3 ) +  p2(G, 4) + . . . .  ~-~p2(G,k). (2) 

Here p2(G, k) represents the number  of  different ways of  selecting k non-adjacent  
paths of  length two in the graph. The summation extends over all possible combina- 
tions of  disjoint paths of  length two. By definition p2(G, 0) = 1 and necessarily 
p2(G, 1 ) is equal to the number  of  paths of  length two in the graph. 

I f  one compares the definition for 2Z with the definition for 1Z given earlier, we 
note that  the only change is the replacement of  "edge"  (which is a path of  length 
one) by "pa th  of  length two".  Hence, indeed this is a very natural  way of  extending 
the definition of  the Hosoya index 1Z to the higher order index 2Z. Since the 
Hosoya  index for a linear chain of  length n gives the Fibonacci numbers  Fn+l it is 
also natural  to call the 2Z numbers  for linear chains the Fibonacci numbers  of  the 
order  two, 2Fn. 

In the same spirit we can generalize the definition (2) and define the Hosoya  
indices of  still higher orders. When the procedure is applied to a chain of  length n, 
we obtain the generalized Fibonacci numbers of  higher order: 

h z =   ph(C,k) ° (3) 

Here the ph(G, k) are defined analogously to P2 but in terms of  disjoint paths of  
length h, withph(G, 0) by definition being 1 andph(G, 1 ) representing the number  of  
paths of  length h in the graph. The subscript h and superscript h have been selected 
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to honor  Haruo Hosoya and at the same time remind us that we deal with higher 
order generalization of  the Fibonacci numbers. Formally, our procedure leads to a 
family of higher order Fibonacci numbers. However, just because the Hosoya index 
I Z for the linear chains of length n gives the Fibonacci numbers Fn+l, this need not  
be a sufficient, or sufficiently strong, argument to the claim that the numbers 2Z for 
the linear chains of length n have properties that allow us to consider them right- 
eously as the generalized Fibonacci numbers hFn. Similarly, we need yet to fully jus- 
tify that the numbers hZ for the linear chains of length n should be considered to be 
generalized Fibonacci numbers hFn. We have to demonstrate that the new numbers 
exhibit properties similar to those of  the Fibonacci numbers F~. 

3 . 2 F  n Fibonacci  numbers 

Let us consider more closely the sequence 

1 ,1 ,2 ,3 ,4 ,6 ,9 ,  13, 19,28,41,60,88, 129,189, . . . .  

Immediately we see that by adding three consecutive members in the series we 
obtain not the text member in the sequence as is the case with the Fibonacci 
sequences, but the second next member of  the sequence 

1 + 1 + 2 = 4 ,  

1 + 2 + 3 = 6 ,  

2 + 3 + 4 = 9 ,  etc. 

Hence we can write the recursion 

2Fn =2 Fn_2 +2 Fn_3 +2Fn_4 " (4) 

Here we see a similarity to the "tribonacci" sequence ofref. [8]. The additivity prop- 
erty (4) justifies the use of the label "generalized tribonacci sequence" for the 
sequence 2F,. Of course, more than one generalization of a single sequence is possi- 
ble, but we believe our approach to be the most  natural generalization. 

In order to derive the generating function and the general formula for 2F n w e  will 
use another, even simpler, recursion expression derived from considering only two 
members of the sequence at a time: 

1 + 2 = 3 ,  

1 + 3 = 4 ,  

2 + 4 = 6 ,  
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3 + 6 = 9 ,  etc. 

Hence, we can write the recursion 

2 F  n = 2Fn-1 q- 2Fn-  3 . (5)  

The apparent  similarity with the original Fibonacci  sequence is now even more  
apparent:  The next member  in the sequence is obtained by adding two previous 
members ,  but  separated by one place in the sequence. Hence we can refer to the 2 F  n 

sequence colloquially as the " jump one" sequence, i.e., to obtain the next member  
in the sequence we add two preceding members  but  separated by one place in the 
sequence. Then the original Fibonacci  sequence could be formally referred to as the 
" jump zero" sequence. 

The two recursion equations (4) and (5) can be related using a shift opera tor  that  
t ransforms the kth entry of  a series of  functions or recurrence equations into the 
corresponding (k + 1)th entry as outlined by Hosoya  and Ohkami [18]. This can be 
easily seen be replacing F,-k by X 4 -k  that gives for (4) and (5), respectively, 
x 4 - x 2 - x - 1 = 0 and x 3 - x a - 1 - 0. It is easy to see that 

(x-+- 1)(x 3 - x  a - 1) = x  4 - x  2 - -X--  1, 

hence the latter, the " t r ibonacci"  recursion, can be simplified using the shift opera- 
tor, here represented by the factor (x + 1). 

To obtain the limit for the ratio 2F,,/2F,,_I as n goes to infinity we follow the pro- 
cedure used to find the limit for F,,/Fn-1 for the Fibonacci  numbers.  We then have 

x = lim{ZFn/2Fn_l } = lim{(ZFn_l + 2Fn_3)/2Fn_l } 

= 1 + lim{2Fn_3/2Fn_l} = 1 + lim{ZFn_3 2Fn_2/ZFn_22Fn_l} 

= 1 + 1 /x  2 (6) 

o r  

x 3 - x 2 -  1 - O. (7) 

We will refer to this as "the limiting equat ion".  One can find that  the root  o f  
eq. (7) can be expressed as 

1.46557123 . . . .  (1/3){21/3/3(29 + 8V/8-~) '/3 + (29 + 8v/-Sv/-~)l/3/21/3}. 

F r o m  eq. (7) we can derive the generating function for the Fibonacci  numbers  
2Fn simply by replacing x with 1/x  as illustrated below: 

( l / x )  3 --  ( l / x )  2 - 1 -- 0 or 1 - x - x 3 = 0. 

F r o m  here the generating function for 2Fn (starting with 2Fl) is 

f ( x ) = l / ( 1 - x - x  3 ) = l + x + x 2 + 2 x  3 + 4 x 4 + 6 x  5 + 1 3 x 6 + 1 9 x  7 +  . . . .  

(8) 
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The above can be compared with the generating function for the Fibonacci  
numbers:  

f(x) = 1/(1 - x - x 2) = 1 + x + 2x 2 + 3x 3 + 5x 4 + 8x 5 + 13x 6 + 21x 7 + . . . .  

(9) 

Again we see great similarity with the Fibonacci  sequence and the second order 
Fibonacci  sequence: The generating function for 2F n c a n  be obtained from the gen- 
erating function for F .  by replacing the quadrat ic  term in the generating function of  
Fn with the cubic term. 

In order to write the general formula for 2F. analogous to the Cauchy-Bine t  for- 
mula  [8]: F .  = [¢~+1 _ ¢~+ l ] /v~fo  r the Fibonacci  numbers  where ¢1 ~--- (1 + x/5)/2 
and ¢z = (1 v ~ ) / 2  are the roots of  the limiting equation x 2 - x - 1 = 0, we have 
to find all the roots of  the limiting equat ion x 3 - x - 1 = 0. The general formula for 
2F. is 

2 F .  = [ ¢ 7 + 2 / ( ¢ 1  - ¢ 2 ) ( ¢ 1  - ¢ 3 )  + - ¢ 1 ) ( ¢ 2  - ¢ 3 )  

+ ¢~+2/(¢3 - ¢1)(¢3 - ¢2)1. (10) 

with 

¢1 = 1.46557123, 

¢2 --- -0 .2327856 + 0.79255199i, 

¢3 = -0 .2327856 - 0.79255199i, (11) 

obtained using the Cardano formula for the solution of  a cubic. 

4. The  h igher  F i b o n a c c i  numbers  

It is easy to verify from Table 1 that  the analogy between F.  and 2F n extends to 
higher Fibonacci  numbers.  Thus the members  of 3Fn can be obtained by adding four 
consecutive members  in the sequence: 

1 + 1 + 2 + 3 = 7 ,  

1 + 2 + 3 + 4 =  10, 

2 + 3 + 4 + 5 = 1 4 ,  

3 + 4 + 5 + 7  = 19, 

and, generally, 

3 F  n = 3 f n _  3 + 3Fn_ 4 n t- 3 f n _  5 + 3 f n _  6 . (12) 
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Observe that the derived element 3Fn is two places away from the last summand 
3Fn_ 3. The alternative simpler recursion follows from addition of only two preced- 
ing members in the sequence, but separated by two places: 

1 + 3 = 4 ,  

1 + 4 = 5 ,  

2 + 5 = 7 ,  

3 + 7 = 1 0 ,  etc. 

The recursion 

3Fn = 3Fn-1 + 3Fn-4 (13) 

illustrates the case of the "jump two", i.e., between 3F~_1 and 3Fn_ 4 there are two 
members of the sequence. These recursive properties generalize to other higher 
Fibonacci numbers for which we can write the recursion 

hF,, = hFn-1 + hFn_h-1 , (14) 

which illustrates the "jump h - 1" case. 
Also all the other expressions derived for 2Fn sequence can be extended to higher 

order Fibonacci numbers. Thus the limiting equations for Fn and 2Fn generalize as 
follows: 

1F~: x 2 - x - l = O ,  

2Fn: x 3 - x 2 -  1 = 0 ,  

3Fn: x 4 - x 3 - 1  = 0 ,  

4Fn: x 5 - x 4 - 1  = 0 ,  

hEn: x h + l - x  h - l = 0 .  (15) 

Here we use 1Fn for Fn to emphasize the similarity of the all limiting equations. 
Derivation of these equations follows the outlined calculation of the limit for 
2Fn/2Fn_l by converting the term :Fn_3/2Fn_I to 2F2n_3Fn_2/2Fn_: :Fn-x. In the case 
of 3Fn/3Fn_1 we obtain the ratio 3F~_4/3Fn_l that is converted to 
3Fn_43Fn_33Fn_2/3Fn_33Fn_23Fn_l, leading to the quartic equation shown. 
Eqs. (15) have a simple geometrical interpretation that again points to kFn as a nat- 
ural extension of the Fibonacci sequence. The geometrical interpretation of the 
Fibonacci numbers can be depicted as the golden ratio relationship of a to b: 

a / b =  ( a + b ) / a  , , , 
a b 
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By substituting a / b  = x we immediately obtain 1 + 1/x = x f rom which follows 
x 2 - x - 1 = 0. For  the 2F, Fibonacci numbers we have a different but  similar geo- 
metrical relationship: 

a / b  = (a 2 + b2) /a  2 . 

Again by substituting a / b  = x one immediately obtains 1 + 1/x 2 = x, from which 
it follows: x 3 - x 2 - 1 = 0. The other higher Fibonacci  numbers  kF. lead to the gen- 
eralization 

a / b  = (a h + bh) /a  h . 

The substi tut ion a / b = x  now gives 1 + l / x h = x ,  f rom which follows: 
~ + l _ x  h _ l  =0.  

The generalized functions for the higher Fibonacci numbers  are 

' f ( x )  = 1/(1 - x - off), 

2f(x) = 1/(1 - x -  x3), 

3f(x) = 1/(1 - x -  x4), 

~ f ( x )  = 1/(1 - x - x ~ + l ) .  (16) 

If  we label all the roots (real and complex) of  the limiting equations as 4~i we can 
write the general expression for the nth element of  the kth generalized Fibonacci  
sequence, kFn, as 

2Fn = ~--~{qbi / I I '~i -  ~bj)}, n = 0, 1 , 2 , 3 , . . . ,  (17) 

where the prime on the product  indicates the j  = i term is deleted. This is the gener- 
alized expression for the higher order Fibonacci  sequences analogous to the gener- 
alized expressions given by Spickerman [19] for the tribonacci sequence. 

5. h z c o u n t i n g  p o l y n o m i a l  

The p ( G , k )  contributions can be viewed as a natural  parti t ioning of  the 
Fibonacci  numbers.  For  a few initial Fn we obtain 

F 2 = l + l ,  

F 3 = 1 + 2 ,  

= 1 + 3 + 1 ,  

= 1 + 4 + 3 ,  
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= 1 + 5 + 6 + 1 ,  

= 1 + 6 + 1 0 + 4 .  

These numbers can be recognized as the binomial coefficients. Hoggatt [20] 
pointed out that Fibonacci numbers are "hidden" in the Pascal triangle. They can 
be obtained by adding the elements in the Pascal triangle using a slanted line as 
illustrated in Table 2 (the upper part), which has been also mentioned in ref. [21]. 
We found that the partitions of the generalized Hosoya numbers for linear chains 

Table 2 
The Pascal triangle and the Fibonacci numbers. Top: The "hidden" Fibonacci numbers as discovered 
by Hoggatt. Bottom: The "hidden" second order Fibonacci numbers introduced in this paper. 

J 

5 6 
1 

35 35 21 7 

28  56 70 56 28  8 

1 

1 

A~ 

1 1 
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that we view as the higher order Fibonacci numbers are also "hidden" in the 
Pascal triangle. For 2F we obtain the following partitions (that follows from 
definition (1)): 

2 F 3 = 1 + 1 ,  

2F4 = 1 + 2 ,  

2F5 = 1 + 3 ,  

2 F  6 = 1 + 4 +  1, 

2F7= 1 + 5 + 3  , 

2 F 8 = 1 + 6 + 6 ,  

2F 9 ~--- 1 + 7 +  10+  1, 

2F10 = 1 + 8 +  1 5 + 4 ,  

and so on. The entries in each "column" of the above list are the same as the leading 
entries of  the Pascal triangle. These entries of the Pascal triangle are, however, dis- 
placed and have to be combined by drawing slanted lines as shown in the lower part  
of  Table 2. As we see from the upper Pascal triangle in Table 2 the Fibonacci num- 
bers are obtained using the lines with the slope given by joining the first entry in a 
line with the second entry in the line above. From the lower Pascal triangle of  
Table 2 we see that the 2Fn Fibonacci numbers are obtained from the lines parallel 
to the line joining the first entry in a line with the second entry two lines above. 
Similarly the higher order Fibonacci numbers hFn can be obtained by drawing par- 
allel lines joining the first entries with the second entry in the hth line above. This 
geometric relationship of  the partitions o f F  and the partitions of 2F n with the bino- 
mial coefficients of the Pascal triangle offer strong support that the here introduced 
hF  n numbers represent the natural generalization of the famed Fibonacci 
sequence. 

There is yet another unique property of the Fibonacci numbers that is also 
reflected in the here introduced higher order Fibonacci numbers. The reciprocal of  
the roots 1/q5 of  the limiting equation for Fibonacci numbers, because they satisfy 
the equation x - 1 / x  = 1, can be simply obtained as the difference: 1/~b = ~b - 1. 
For  the roots associated with the kth order Fibonacci numbers we have a similar 
expression: 1/~b = ~b k - 1, since now ~b satisfies the equation x -  1/x ~ = 1. The 
numbers q~ are the only real numbers, which when decreased by one give their own 
reciprocal to the power k. 
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6. App l i ca t ion  o f  the h igher  o rder  F ibonacc i  recurs ion  expressions 

The higher order Fibonacci numbers appear as generalized hZ indices for linear 
chains. The linear chains represent but very special structures and one may think 
that  the generalized Fibonacci numbers will hardly have other applications. Time 
will show, but even at this moment  we will show a use of the recursions for the 
higher order Fibonacci numbers in deriving the higher order Hosoya hz  indices for 
families of branched alkanes. 

In Table 3 are listed hz  numbers for several families of alkanes. In all cases we 
see a simple regularity for the higher order Hosoya numbers for the successive 
members of  each family. The 1Z number for (n + 1)th member of each family is sim- 
ply obtained by adding the 1Z numbers of  nth and (n - 1 )th member. The 2Z num- 
ber for (n + 1)th member of each family is simply obtained by adding the 2Z 
numbers o fn th  and (n - 2)th members. The 3Z number for (n + 1)th member  of  a 
family is similarly simply obtained by adding the 3Z numbers of nth and (n - 3)th 
members, and so on. 

7. A slightly m o r e  general  f o rma t  

In a slightly more general format one can naturally consider generating 
functions 

eh(G,x) = ~-~p,(G,k)x k . 

Herepn(G, k) is the number of ways of disjointedly embedding k copies of the h-site 
path on the graph G, and x is a variable. Thence Ph(G, x) = hZ, but also Ph(G, x) is 
essentially the partition function for h-unit oligomers on G. Here h-site path repre- 
sents the h-mer, x is chemical activity for the oligomers, and G might usually be 
viewed to be regular lattice graphs [22,23]. 

In a chemical graph-theoretic context, exactly the same sequence of invariants 
has very recently (since the submission of our manuscript) been suggested by 
Hermann and Zinn [12]. They, however, use the notat ion Zh with the convention 
that Z2 is the Hosoya index Z, or our 1Z, while their Z1, the smallest index of  this 
type counting nonadjacent atoms, would be in our notat ion Oz. We think that it is 
better to refer to the original Hosoya index Z as I Z than as Z2 so we continue to use 
our notation. 

For the case that  G is a length-n regular polymer graph, rather than the simple 
linear chain considered in this paper, linear recursion occurs for many invariants 
including Ph(G, x) and hz. The results of such linear recursions can be viewed as 
generalized Fibonacci numbers in some sense. That  is, the sequence of hz  satisfies 
the following: 

(i) homogenous linear recurrence relations with constant coefficients; 
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Table 3 
The higher order Hosoya numbers for several families of methyl substituted alkenes. 

91 

Molecule 1Z 2Z 3Z 4Z 

2-Methyl-alkanes 

-butane 7 5 3 
-pentane 11 7 4 3 
-hexane 18 11 5 4 
-heptane 29 16 6 5 
-octane 47 23 9 6 
-nonane 76 34 13 7 
-decane 123 50 18 18 

3-Methyl alkanes 

-pentane 12 6 5 2 
-hexane 19 9 6 4 
-heptane 31 14 8 5 
-octane 50 20 11 6 
-nonane 81 29 16 7 
-decane 131 43 22 9 

2,2-Dimethylalkanes 

-propane 5 7 1 
-butane 9 8 4 
-pentane 14 12 5 4 
-hexane 23 19 6 5 
-heptane 37 27 7 6 
-octane 60 39 11 7 
-nonane 97 58 16 8 

2,3-Dimethylalkanes 

-butane 10 8 5 
-pentane 15 13 5 5 
-hexane 25 20 6 5 
-heptane 40 28 7 6 
-octane 65 41 12 7 
-nonane 105 61 17 8 

(ii) the n u m b e r s  in the sequence satisfy C a u c h y - B i n e t  relat ions;  

(iii) the n u m b e r s  in the sequence m a y  be expressed in te rms  o f  mu l t i nomia l  coeffi-  

cients; and  

(iv) there  is a genera t ing  func t ions  expressed as the ra t io  o f  two  po lynomia l s .  
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The relation between (i) and (ii) for a much wider class ofinvariants is addressed 
by Klein et al. [24] still in a chemiscal context. The case (iii) is implied in our identifi- 
cation of  the higher order Fibonacci numbers with binomial coefficients of the 
Pascal triangle. The relation between (i), (ii) and (iii) is illustrated by Zivkovi6 et al. 
[25], although this applies to another invariant and manipulations that extend 
beyond this limitation. Also Hosoya has addressed such ideas [18,21,26]. For a 
purely mathematical  view, see several combinatorics texts such as Stanley's 
Enumerative Combinatorics [27]. 

Apart  from the references in the preceding paragraph, there is a question as to 
on what one wishes to bestow the "title" the "higher-order Fibonacci numbers".  
There have been so many different generalizations of Fibonacci numbers starting 
with the Lucas numbers [4], in which the initial two members of  the sequence that 
define the whole sequence, instead of  being 1, 1, are 1,3, and using three subsequent 
members to obtain the next member in the sequence (the so-called tribonacci 
sequence). Recently Lee and Lee [28] considered k-generalized Fibonacci sequence 
based on the rule (for n > k > 1) 

g(k )  ,~(k) . ( k )  _ (k) 
= 6 n - 1  "4- 6 n - 2  -4- • . . Jr- g n - k  

with conditions 

glk) : g~k) . . . . .  g(k~2 = O; g(kk)l : g(k) = 1. 

For  example, i fk = 6 then 6-generalized Fibonacci numbers are given by 

0,0, 0, 0, 1, 1,2,4,8, 16,32,63,125,248,477,961, 1906, . . . .  

While such sequences have some interesting properties and parallel Fibonacci num- 
bers, in our view they may better be referred to as generalized k-bonacci numbers in 
analogy with tribonacci numbers (and consequently are legitimate generalized 
Fibonacci numbers) rather than higher order Fibonacci numbers. We would like to 
reserve the label higher order Fibonacci numbers for members of sequences that  
parallel Fibonacci numbers more closely than generalized Fibonacci sequences 
appear to do. For example, in the above case the sequence includes the initial zeros, 
which are essential for recursion, but the Fibonacci sequences has no zeros (and 
even if such are formally introduced, they would be redundant,  not  essential). 

We insist on additional constraints besides the already mentioned conditions 
(i)-(iv), which incidentally are not independent, but are all more-or-less equivalent 
(as may be deduced from ref. [27]) and which hardly discriminate among many 
sequences. Just as the Fibonacci numbers involve the recursion including only two 
members of  the sequence (not three as in tribonacci, or more as in k-bonacci 
sequences), we also require recursions involving only two members of the sequence. 
Under  this more stringent requirement most of the generalized Fibonacci numbers 
mentioned in the literature would be disqualified for the title "higher order 
Fibonacci numbers"  and will remain "only" generalized Fibonacci numbers. The 
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Lucas numbers would still qualify for the "title" and need be excluded, and we 
can exclude them on other grounds. One of the reasons for excluding Lucas num- 
bers 

1,3,4, 7, 11, 18, 29,47, 76, 123,199,322, 521, . . .  

is that these very numbers themselves can be generalized in "higher order Lucas 
numbers"  by applying the idea of  higher order Hosoya numbers to cycles [29]. 
Because both the Fibonacci numbers and the higher order Fibonacci numbers can 
be extracted from the Pascal triangle (by summing the entries on the corresponding 
slanted lines shown in Table 2, which is not the case with Lucas numbers), we may 
consider this simple regularity as the essential ingredient that justifies the "ti t le" 
the "higher order Fibonacci numbers".  
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At the recent Seventh International Conference on Fibonacci Numbers  and 
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on his earlier work on generalized Fibonacci numbers which are identical to the kZ 
numbers discussed here. His work was published in his book: Codes of  the Golden 
Proport ion (Radio and Communicat ion,  Moscow, 1984, in Russian). 
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